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This paper studies the equilibrium behavior of customers in the Geo=Geo=1 queueing sys-
tem under multiple vacation policy. The server leaves for repeated vacations as soon as the
system becomes empty. Customers decide for themselves whether to join or to balk, which
is more sensible than the classical viewpoint in queueing theory. Equilibrium customer
behavior is considered under four cases: fully observable, almost observable, almost unob-
servable and fully unobservable, which cover all the levels of information. Based on the
reward-cost structure, we obtain the equilibrium balking strategies in all cases. Further-
more, the stationary system behavior is analyzed and a variety of performance measures
are developed under the corresponding strategies. Finally, we present several numerical
experiments that demonstrate the effect of the information level as well as several param-
eters on the equilibrium behavior and social benefit. The research results not only offer the
customers optimal strategies but also provide the managers with a good reference to dis-
cuss the pricing problem in the queueing system.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Due to the widely applications for management in service system and electronic commerce, there exists an emerging ten-
dency to study customers’ behavior in queueing models. In these models, customers are allowed to make decisions as to
whether to join or to balk, buy priority or not etc., which is more sensible to describe queueing models. Traditionally, queue-
ing systems are divided into the observable model and the unobservable model regarding whether the information of the
queue length is available to customers or not prior to their actions. The observable queueing system was first analyzed
by Naor [1], who studied equilibrium and social optimal strategies in an M=M=1 queue with a simple linear reward-cost
structure. Afterward, Naor’s model and results had been extended in several literatures, see e.g. [2–4]. Chen and Frank [5]
generalized Naor’s model assuming that both the customers and the server maximize their expected discounted utility using
a common discount rate. Erlichman and Hassin [6] discussed a priority queue in which customers have the option of over-
taking some or all of the customers. On the other hand, Edelson and Hildebrand [7] presented the pioneering literature on
the unobservable queue in which the properties of the basic unobservable M=M=1 queue were discovered. Littlechild [8]
extended the model of Edelson and Hildebrand assuming that customers have different service values. Chen and Frank
[9] discussed the robustness of the main result of Edelson and Hildebrand, that a profit maximizer chooses a socially optimal
admission fee, when the assumption of a linear utility function is removed. Balachandran [10] considered an unobservable
. All rights reserved.
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M=G=1 model with a fixed cost of running the service facility. Subsequently, several authors had investigated the equilibrium
strategies in various unobservable models incorporating many diverse characteristics. The fundamental results on this sub-
ject in both the observable and unobservable queueing systems can be found in the comprehensive monograph of Hassin and
Haviv [11].

Discrete-time queueing systems with vacations have been widely studied in the past because of their extensively use in
digital communication and telecommunication networks. An excellent and complete study on discrete-time vacation models
had been presented by Takagi [12]. Zhang and Tian [13] presented the detailed analysis on the Geo=G=1 queue with multiple
adaptive vacations and further in [14] Tian and Zhang dealt with a GI=Geo=1 queue with multiple vacations and exhaustive
service. Recently, Samanta et al. [15] and Tang et al. [16] did research on the discrete-time GeoX=G=1 vacation queue with
different characteristics.

As for the research on the equilibrium customer behavior in vacation queue models, the first was presented by Burnetas
and Economou [17], who explored both the observable and unobservable cases in a single server Markovian queue with set
up times. Then, Economou and Kanta [18] analyzed the equilibrium balking strategies in the observable single-server queue
with breakdowns and repairs. Recently, Sun et al. [19] considered the equilibrium behavior of customers in an observable
M=M=1 queue under interruptible and insusceptible setup/closedown policies. Economou et al. [20] extended the analysis
done for the almost and fully unobservable queues in [17] to the non-Markovian case. Liu et al. [21] studied the equilibrium
threshold strategies in observable queues under single vacation policy. However, there was no work concerning the equilib-
rium balking behavior in the discrete-time queues with multiple vacations.

In the present paper we analyze the equilibrium balking strategies in the discrete-time Geo=Geo=1 queue with multiple
vacations. To the authors’ knowledge, this is the first time that the multiple vacation policy is introduced into the economics
of queues. The customers’ dilemma is whether to join the system or balk. They make decisions based on a nature reward-cost
structure, which incorporates their desire for service as well as their unwillingness to wait. We explore various cases with
regard to the level of information available to customers upon arrival. More specifically, at his arrival epoch a customer may
or may not know the number of customers present and/or the state of the server. Therefore, four combinations emerge, rang-
ing from full to no information. In each of the four cases we discuss customer equilibrium strategies, analyze the stationary
behavior of the corresponding system and derive the equilibrium social benefit for all customers. Furthermore, we present
several numerical experiments to explore the effect of the information level as well as several parameters on the equilibrium
behavior and the social benefit.

This paper is organized as follows. In Section 2, we give the model description and the reward-cost structure. Section 3
discusses the observable queue in which customers observe the length of the queue. We distinguish two subcases depending
on the additional information, or lack thereof, of the server state. We determine equilibrium threshold strategies and analyze
the resulting stationary system behavior. Then Section 4 studies the unobservable queue where the queue length is not avail-
able to customers. We derive the corresponding mixed equilibrium strategies and investigate the stationary behavior for the
almost and fully unobservable models. In Section 5, we illustrate the effect of the information level on the equilibrium
behavior and the social benefit via analytical and numerical comparisons. Finally, in Section 6, we give a necessary
conclusion.
2. Model description

We consider a single server queueing system with multiple vacations. The server takes a vacation immediately at the end
of each busy period. If he finds the system still empty upon returning from the vacation, he will take another vacation and so
on. In this paper, for any real number x 2 ½0;1�, we denote x ¼ 1� x.

Assume that customer arrivals occur at the end of slot t ¼ n�;n ¼ 0;1; . . .. The inter-arrival times are independent and
identically distributed sequences following a geometric distribution with rate p.
PðT ¼ kÞ ¼ ppk�1; k P 1; 0 < p < 1; p ¼ 1� p:
The service starting and service ending occur at slot division point t ¼ n; n ¼ 0;1; . . .. The service times are independent each
other and geometrically distributed with rate l.
PðS ¼ kÞ ¼ llk�1; k P 1; 0 < l < 1; l ¼ 1� l:
The beginning and ending of vacation occur at the epoch which is similar to t ¼ n� in shape. The vacation time is an inde-
pendent and identically distributed random variable following a geometric distribution with rate h.
PðV ¼ kÞ ¼ hhk�1; k P 1; 0 < h < 1; h ¼ 1� h:
We assume that inter-arrival times, service times, and vacation times are mutually independent. The queueing system fol-
lows the First-Come-First-Served (FCFS) service discipline. Moreover, suppose the systems considered are stable. The service
rate exceeds the arrival rate so that the server can accommodate all arrivals.
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Let Ln be the number of customers in the system at time nþ. According to the assumptions above, a customer who finishes
service and leaves at t ¼ nþ does not reckon on Ln while arrives at t ¼ n� should reckon on Ln. We assume
Jn ¼
0; the system is in a vacation period at time nþ;

1; the system is in a service period at time nþ:

�

It is clear that fLn; Jng is a Markov chain with state space
X ¼ fðk; jÞjk P j; j ¼ 0;1g;
where state ðk;0Þ; k P 0, indicates that the system is in the vacation period and there are k customers; state ðk;1Þ; k P 1,
indicates that the system is in the busy period and there are k customers. Furthermore, we distinguish four cases depending
on the information provided to customers before making decisions, which cover all the levels of information.

� Fully observable case: Customers observe ðLn; JnÞ;
� Almost observable case: Customers observe only Ln;
� Almost unobservable case: Customers observe only Jn;
� Fully unobservable case: Customers do not observe the system state.

Our interest is in the behavior of customers when they decide whether to join or to balk at their arrival instant. Suppose Se
be the mean sojourn time of a customer in equilibrium and Be be the expected net benefit. To model the decision process, we
assume that every customer receives a reward of R units for completing service. This may reflect his satisfaction and the
added value of being served. On the other hand, there exists a waiting cost of C units per time unit that the customer remains
in the system (in queue or in service). Customers are risk neutral and maximize their expected net benefit. From now on, we
assume the condition
R >
C
l
þ C

h
: ð1Þ
This condition ensures that the reward for service exceeds the expected cost for a customer who finds the system empty.
Otherwise, after the system becomes empty for the first time no customers will ever enter. Finally, we stress that the deci-
sions are irrevocable: retrials of balking customers and reneging of entering customers are not allowed.

3. Analysis of the observable queues

We first consider the observable queues in which customers are informed of the queue length upon arrival. We show that
there exist equilibrium balking strategies of thresholds type. In the fully observable queue, a pure threshold strategy is spec-
ified by a pair ðLeð0Þ; Leð1ÞÞ and has the form ‘observe ðLn; JnÞ at arrival instant; enter if Ln 6 LeðJnÞ and balk otherwise’. In the
almost observable queue, a pure threshold strategy is specified by a single number Le and has the form ’observe Ln; enter if
Ln 6 Le and balk otherwise’.

3.1. Fully observable queue

We begin with the fully observable case in which arriving customers know both the number of present customers Ln and
the state of the server Jn. In equilibrium, a customer who joins the system when he observes state ðk; jÞ has mean sojourn
time
Se ¼ kþ 1
l
þ 1� j

h
:

Thus his expected net benefit is
Be ¼ R� Cðkþ 1Þ
l

� Cð1� jÞ
h

:

The customer strictly prefers to enter if Be is positive and is indifferent between entering and balking if it equals zero. We
thus conclude the following theorem.

Theorem 3.1. In the fully observable Geo=Geo=1 queue with multiple vacations, there exist thresholds
ðLeð0Þ; Leð1ÞÞ ¼
Rl
C
� l

h

� �
� 1;

Rl
C

� �
� 1

� �
ð2Þ
such that the strategy ‘observe ðLn; JnÞ, enter if Ln 6 LeðJnÞ and balk otherwise’ is a unique equilibrium in the class of the threshold
strategies.
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Fig. 1. Transition rate diagram for the ðLeð0Þ; Leð1ÞÞ threshold strategy in the fully observable queue.
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Remark 1. Leð0Þ is the threshold when an arriving customer finds the system is in a vacation period and Leð1Þ is the thresh-
old when it is in a regular busy period. We get Leð0Þ and Leð1Þ from the condition Be > 0 when i ¼ 0 and 1 respectively. The
symbol bc indicates rounding down.

For the stationary analysis of the system, note that if all customers follow the threshold strategy in (2), the system follows
a Markov chain with state space restricted to Xfo ¼ fðk;0Þj0 6 k 6 Leð0Þ þ 1g [ fðk;1Þj1 6 k 6 Leð1Þ þ 1g. The transition rate
diagram is depicted in Fig. 1. The one-step transition probabilities of ðLn; JnÞ are as follows:

Case 1: if Xn ¼ ð0; 0Þ,
Xnþ1 ¼
ð0;0Þ; with probability p;

ð1;0Þ; with probability hp;

ð1;1Þ; with probability hp:

8><>:

Case 2: if Xn ¼ ðk;0Þ;1 6 k 6 Leð0Þ,
Xnþ1 ¼

ðk;0Þ; with probability hp;

ðk;1Þ; with probability hp;

ðkþ 1;0Þ; with probability hp;

ðkþ 1;1Þ; with probability hp:

8>>><>>>:

Case 3: if Xn ¼ ðLeð0Þ þ 1; 0Þ,
Xnþ1 ¼
ðLeð0Þ þ 1; 0Þ; with probability h;

ðLeð0Þ þ 1;1Þ; with probability h:

(

Case 4: if Xn ¼ ð1;1Þ,
Xnþ1 ¼
ð0;0Þ; with probability pl;
ð1;1Þ; with probability 1� pl� pl;
ð2;1Þ; with probability pl:

8><>:

Case 5: if Xn ¼ ðk;1Þ;2 6 k 6 Leð1Þ
Xnþ1 ¼
ðk� 1;1Þ; with probability pl;
ðk;1Þ; with probability 1� pl� pl;
ðkþ 1;1Þ; with probability pl:

8><>:

Case 6: if Xn ¼ ðLeð1Þ þ 1;1Þ,
Xnþ1 ¼
ðLeð1Þ;1Þ; with probability l;
ðLeð1Þ þ 1;1Þ; with probability l:

�

Based on the one-step transition situation analysis, using the lexicographical sequence for the states, the transition prob-
ability matrix can be written as
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eP ¼

B0 A0

B1 A1 C1

B2 A1 C1

. .
. . .

. . .
.

B2 A1 C1

B2 A2 C2

B3 A3 C3

B4 A3 C3

. .
. . .

. . .
.

B4 A3 C3

B5 A4

2666666666666666666666664

3777777777777777777777775

; ð3Þ
where
B0 ¼ p; A0 ¼ ðhp; hpÞ;

B1 ¼
0

pl

� �
; A1 ¼

hp hp
0 1� pl� pl

" #
; C1 ¼

hp hp
0 pl

" #
;

B2 ¼
0 0
0 pl

� �
; A2 ¼

h h

0 1� pl� pl

" #
; C2 ¼

0
pl

� �

and
B3 ¼ ð0;plÞ; A3 ¼ 1� pl� pl; C3 ¼ pl; B4 ¼ pl; A4 ¼ l; B5 ¼ l:
Let ðL; JÞ be the stationary limit of ðLn; JnÞ and its distribution is denoted as
pkj ¼ PfL ¼ k; J ¼ jg; ðk; jÞ 2 Xfo

pk ¼
p00; k ¼ 0;
ðpk0;pk1Þ; 1 6 k 6 Leð0Þ þ 1;
pk1; Leð0Þ þ 2 6 k 6 Leð1Þ þ 1:

8><>:
p ¼ ðp0;p1; . . . ;pLeð1Þþ1Þ:
We solve for the stationary distribution pkj by noting that the vector p satisfies the equation peP ¼ p and have the following
system of steady-state equations:
p00 ¼ pp00 þ plp11; ð4Þ
pk0 ¼ hppk�1;0 þ hppk0; k ¼ 1;2;3; . . . ; Leð0Þ; ð5Þ
pLeð0Þþ1;0 ¼ hppLeð0Þ;0 þ hpLeð0Þþ1;0; ð6Þ
p11 ¼ hpp00 þ hpp10 þ ð1� pl� plÞp11 þ plp21; ð7Þ
pk1 ¼ hppk�1;0 þ plpk�1;1 þ hppk0 þ ð1� pl� plÞpk1 þ plpkþ1;1; k ¼ 2;3; . . . ; Leð0Þ; ð8Þ
pLeð0Þþ1;1 ¼ hppLeð0Þ;0 þ plpLeð0Þ;1 þ hpLeð0Þþ1;0 þ ð1� pl� plÞpLeð0Þþ1;1 þ plpLeð0Þþ2;1; ð9Þ
pk1 ¼ plpk�1;1 þ ð1� pl� plÞpk1 þ plpkþ1;1; k ¼ Leð0Þ þ 2; . . . ; Leð1Þ � 1; ð10Þ
pLeð1Þ;1 ¼ plpLeð1Þ�1;1 þ ð1� pl� plÞpLeð1Þ;1 þ lpLeð1Þþ1;1; ð11Þ
pLeð1Þþ1;1 ¼ plpLeð1Þ;1 þ lpLeð1Þþ1;1: ð12Þ
Define a ¼ pl
pl ; b ¼

hp
1�hp

. Thus a < 1 and b < 1.

By iterating (5) and (10), taking into account (6), (11) and (12), we obtain
pk0 ¼ bkp00; k ¼ 1;2; . . . ; Leð0Þ; ð13Þ

pLeð0Þþ1;0 ¼
1� hp

h
bLeð0Þþ1p00; ð14Þ

pk1 ¼ ak�Leð0Þ�1pLeð0Þþ1;1; k ¼ Leð0Þ þ 2; . . . ; Leð1Þ; ð15Þ
pLeð1Þþ1;1 ¼ paLeð1Þ�Leð0ÞpLeð0Þþ1;1: ð16Þ
From (8) we observe that fpk1jk ¼ 1;2; . . . ; Leð0Þ þ 1g is a solution of the nonhomogeneous linear difference equation with
constant coefficients
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plxkþ1 � ðplþ plÞxk þ plxk�1 ¼ �hppk�1;0 � hppk0 ¼ �
h

h
bkp00; k ¼ 2;3; . . . ; Leð0Þ; ð17Þ
where the last equation is due to (13). Using the standard approach for solving such equations, see e.g. [22], we consider the
corresponding characteristic equation
plx2 � ðplþ plÞxþ pl ¼ 0;
which has two roots at 1 and a. Then the general solution of the homogeneous version of (17) is xhom
k ¼ A1k þ Bak.

The general solution xgen
k of (17) is given as xgen

k ¼ xhom
k þ xspec

k , where xspec
k is a specific solution of (17). Because the nonho-

mogeneous part of (17) is geometric with parameter b, we can find a specific solution Dbk (we assume a – b). Substituting
xgen

k ¼ Dbk into (17) we obtain
D ¼ 1� hp
hp� l

p00: ð18Þ
Hence the general solution of (17) is given as
xgen
k ¼ A1k þ Bak þ Dbk; k ¼ 1;2; . . . ; Leð0Þ þ 1; ð19Þ
where D is given by (18) and A;B are to be determined.
From (19) for k ¼ 1, we obtain
Aþ Baþ Db ¼ p11 ¼
p

pl
p00: ð20Þ
Furthermore, substituting (19) into (7) for k ¼ 2, it follows after some rather tedious algebra that
Aþ Ba2 þ Db2 ¼ p21 ¼
p2ðplþ plhþ phlÞ
ðplÞ2ð1� hpÞ

p00: ð21Þ
Solving the system of (20) and (21), we obtain
A ¼ 0; B ¼ �h� hp
l� h� hp

p00:
Then, from (19),
pk1 ¼
hþ hp

l� h� hp
ðbk � akÞp00; k ¼ 1;2; . . . ; Leð0Þ þ 1: ð22Þ
We have thus expressed all stationary probabilities in terms of p00 in relations see (13)–(16) and (22). The remaining prob-
ability p00 can be found from the normalization equation
XLeð0Þþ1

k¼0

pk0 þ
XLeð1Þþ1

k¼1

pk1 ¼ 1:
After some algebraic simplification, we can express all stationary probabilities in the following theorem.

Theorem 3.2. Consider a fully observable Geo/Geo/1 queue with multiple vacations and a – b, in which customers follow the
threshold policy ðLeð0Þ; Leð1ÞÞ given in Theorem 3.1. The stationary probabilities fpkjjðk; jÞ 2 Xfog are as follows:
p00 ¼
hþ hp

h
þ hþ hp

l� h� hp
hp
h
� pl

l� p
þ pp

l� p
aLeð1Þþ1 þ pl

l� p
� hp

h
� pp

l� p
aLeð1Þ�Leð0Þ

� �
bLeð0Þþ1

� �� 	�1

; ð23Þ

pk0 ¼ bkp00; k ¼ 1;2; . . . ; Leð0Þ; ð24Þ

pLeð0Þþ1;0 ¼
bLeð0Þþ1

1� b
p00; ð25Þ

pk1 ¼
hþ hp

l� h� hp
ðbk � akÞp00; k ¼ 1;2; . . . ; Leð0Þ þ 1; ð26Þ

pk1 ¼
hþ hp

l� h� hp
b
a

� �Leð0Þþ1

� 1

" #
akp00; k ¼ Leð0Þ þ 2; . . . ; Leð1Þ; ð27Þ

pLeð1Þþ1;1 ¼
hþ hp

l� h� hp
b
a

� �Leð0Þþ1

� 1

" #
paLeð1Þþ1p00: ð28Þ
Because the probability of balking is equal to pLeð0Þþ1;0 þ pLeð1Þþ1;1, the social benefit per time unit when all customers fol-
low the threshold policy ðLeð0Þ; Leð1ÞÞ given in Theorem 3.1 equals
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SBfo ¼ Rpð1� pLeð0Þþ1;0 � pLeð1Þþ1;1Þ � C
XLeð0Þþ1

k¼0

kpk0 þ
XLeð1Þþ1

k¼1

kpk1

 !
:

3.2. Almost observable queue

We next consider the almost observable case, where arriving customers only know the queue length Ln before making
decisions. Hence the stationary distribution of the corresponding Markov chain is from Theorem 3.2 with
Leð0Þ ¼ Leð1Þ ¼ Le and state space Xao ¼ fkj0 6 k 6 Le þ 1g. The transition rate diagram is depicted in Fig. 2.

Theorem 3.3. Consider an almost observable Geo/Geo/1 queue with multiple vacations and a – b, in which customers follow the
threshold policy Le. The stationary probabilities fp0kjk 2 Xaog are as follows:
p00 ¼
hþ hp

l� h� hp
l2 � lp� lhp

hðl� pÞ þ pl
l� p

aLeþ1 � l
h

bLeþ1
� �� ��1

;

p0k ¼
l

l� h� hp
bk � hþ hp

l� h� hp
ak

� �
p00; k ¼ 1;2; . . . ; Le;

p0Leþ1 ¼
ðl� hÞðhþ hpÞ
hðl� h� hpÞ

bLeþ1 � pðhþ hpÞ
l� h� hp

aLeþ1

" #
p00:
Because the expected net benefit of a customer who finds k customers in the system, if he decides to enter, is
Be ¼ R� Cðkþ 1Þ
l

�
Cp�JjLð0jkÞ

h
; ð29Þ
where p�JjLð0jkÞ is the probability that an arriving customer finds the server in a vacation time, given that there are k custom-
ers. Using the various forms of pkj from (23)–(28), we get
p�JjLð0jkÞ ¼ 1þ hþhp
l�h�hp

1� a
b


 �k
� �� ��1

; k ¼ 0;1;2; . . . ; Le;

p�JjLð0jLe þ 1Þ ¼ 1þ ð1� bÞp hþhp
l�h�hp

1� a
b


 �Leþ1
� �� ��1

:

8>>><>>>: ð30Þ
In light of (29) and (30), we introduce the function
gðk; yÞ ¼ R� Cðkþ 1Þ
l

� C
h

1þ y
hþ hp

l� h� hp
1� a

b

� �k
 !" #�1

; y 2 ½ð1� bÞp;1�; k ¼ 0;1;2; . . . ; ð31Þ
which will allow us to prove the existence of equilibrium threshold strategies and derive the corresponding thresholds. Let
gUðkÞ ¼ gðk;1Þ ¼ R� Cðkþ 1Þ
l

� C
h

1þ hþ hp
l� h� hp

1� a
b

� �k
 !" #�1

; k ¼ 0;1;2; . . . ; ð32Þ

gLðkÞ ¼ gðk; ð1� bÞpÞ ¼ R� Cðkþ 1Þ
l

� C
h

1þ ð1� bÞp hþ hp
l� h� hp

1� a
b

� �k
 !" #�1

; k ¼ 0;1;2; . . . ; ð33Þ
...

... 0,eL

1,eL 1,1eL

0,1eL

pp1 pp1 pp1

p p p p

p p p
p

p p pp p p p p

ppp

p p p p p

p

Fig. 2. Transition rate diagram for the Le threshold strategy in the almost observable queue.
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It is easy to see that
gUð0Þ ¼ gLð0Þ ¼ R� C
l
� C

h
> 0:
In addition,
lim
k!1

gUðkÞ ¼ lim
k!1

gLðkÞ ¼ �1:
Hence there exists kU such that
gUð0Þ; gUð1Þ; gUð2Þ; . . . ; gUðkUÞ > 0 and gUðkU þ 1Þ 6 0: ð34Þ
Because the function gðk; yÞ is increasing with respect to y for every fixed k, we get the relation gLðkÞ 6 gUðkÞ; k ¼ 0;1;2; . . ..
In particular, gLðkU þ 1Þ 6 0 while gLð0Þ > 0. Hence, there exists kL 6 kU such that
gLðkLÞ > 0 and gLðkL þ 1Þ; . . . ; gLðkUÞ; gLðkU þ 1Þ 6 0: ð35Þ
We can now establish the existence of the equilibrium threshold policies in the almost observable case and give the follow-
ing theorem.

Theorem 3.4. In the almost observable Geo=Geo=1 queue with multiple vacations, all pure threshold strategies ‘observe Ln, enter if
Ln 6 Le and balk otherwise’ for Le ¼ kL; kL þ 1; . . . ; kU are equilibrium balking strategies.
Proof. Consider a tagged customer at his arrival instant and assume all other customers follow the same threshold strategy
‘observe Ln, enter if Ln 6 Le and balk otherwise’ for some fixed Le 2 fkL; kL þ 1; . . . ; kUg. Then p�JjLð0jkÞ is given by (30).

If the tagged customer finds k 6 Le customers and decides to enter, his expected net benefit is equal to
R� Cðkþ 1Þ
l

� C
h

1þ hþ hp
l� h� hp

1� a
b

� �k
 !" #�1

¼ gUðkÞ > 0;
because of (29)–(32) and (34). So in this case the customer prefers to enter.
If the tagged customer finds k ¼ Le þ 1 customers and decides to enter, his expected net benefit is
R� CðLe þ 2Þ
l

� C
h

1þ ð1� bÞp hþ hp
l� h� hp

1� a
b

� �Leþ1
 !" #�1

¼ gLðLe þ 1Þ 6 0;
because of (29)–(31), (33) and (35). Therefore in this case the customer prefers to balk. h

Remark: There exist equilibrium mixed threshold strategies. In Theorem 3.4, we restrict our attention to the pure thresh-
old strategies because they are evolutionarily stable strategy (ESS) while the mixed are not ESS.

Because the probability of balking is equal to p0Leþ1, the social benefit per time unit when all customers follow the thresh-
old policy Le given in Theorem 3.4 equals
SBao ¼ Rpð1� p0Leþ1Þ � C
XLeþ1

k¼0

kp0k

 !
:

4. Analysis of the unobservable queues

In this section we turn attention to the unobservable queues, where arriving customers do not observe the length of the
queue. We prove that there exist equilibrium mixed strategies. In the almost unobservable queue, a mixed strategy is spec-
ified by a vector ðqð0Þ; qð1ÞÞ, where qðjÞ is the probability of joining when the server is in state j. In the fully unobservable
queue, where customers are provided with no information, a mixed strategy is specified by the probability q of entering.

4.1. Almost unobservable queue

We begin with the almost unobservable case in which arriving customers observe the state j of the server upon arrival. If
all customers follow the same mixed strategy ðqð0Þ; qð1ÞÞ, then the system follows a Markov chain in which the arrival rate
equals pðjÞ ¼ pqðjÞ when the server is in state j. The state space is Xau ¼ fðk; jÞjk P j; j ¼ 0;1g and the transition rate diagram
is illustrated in Fig. 3.

Using the lexicographical sequence for the states, the transition probability matrix can be written as
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eP ¼
B0 A0

B1 A1 C1

B2 A1 C1

B2 A1 C1

. .
. . .

. . .
.

266666664

377777775; ð36Þ
where
B0 ¼ pð0Þ; A0 ¼ ðhpð0Þ; hpð0ÞÞ; B1 ¼
0

pð1Þl

� �
;

B2 ¼
0 0
0 pð1Þl

� �
; A1 ¼

hpð0Þ hpð0Þ
0 1� pð1Þl� pð1Þl

" #
; C1 ¼

hpð0Þ hpð0Þ
0 pð1Þl

" #
:

Due to the block tridiagonal structure of transition probability matrix, fLn; Jng is a quasi birth and death chain. Let ðL; JÞ be
the stationary limit of ðLn; JnÞ and its distribution is denoted as
p00kj ¼ PfL ¼ k; J ¼ jg; ðk; jÞ 2 Xau;

p000 ¼ p0000; p00k ¼ ðp00k0;p
00
k1Þ; k P 1;

p00 ¼ ðp000;p001;p002; . . .Þ:
We solve for ðp0010;p0011Þ by the equation p00eP ¼ p00 and obtain that:
ðp0010;p
00
11Þ ¼

hpð0Þ
1� hpð0Þ

;
pð0Þ

pð1Þl

 !
p0000: ð37Þ
Using the matrix-geometric solution method, the rate matric R is the solution of the matrix quadratic equation
R ¼ R2B2 þ RA1 þ C1:
After some rather tedious algebra, we obtain that:
R ¼
bð0Þ pð0Þ

pð1Þl

0 að1Þ

" #
; ð38Þ
where bð0Þ ¼ hpð0Þ
1�hpð0Þ

;að1Þ ¼ pð1Þl
pð1Þl

.
Thus from
p00k ¼ ðp0010;p
00
11ÞR

k�1; k P 1; ð39Þ
we can express all stationary probabilities in terms of p0000 in relations see (37)–(39). The remaining probability p0000 can be
found from the normalization equation
X1
k¼0

p00k0 þ
X1
k¼1

p00k1 ¼ 1:
After some algebraic simplification, we can express all stationary probabilities in the following theorem.
...

...

1,k 1,1k

0,1k
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Fig. 3. Transition rate diagram for the ðqð0Þ; qð1ÞÞ mixed strategy in the almost unobservable queue.
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Theorem 4.1. Consider a Geo/Geo/1 queue with multiple vacations and bð0Þ – að1Þ, in which customers observe the state j of the
server upon arrival and enter with probability qðjÞ, i.e. they follow the mixed policy ðqð0Þ; qð1ÞÞ. The stationary probabilities
fp00kjjðk; jÞ 2 Xaug are
p0000 ¼
hðl� pð1ÞÞ

ðhþ hpð0ÞÞðl� pð1Þ þ pð0ÞÞ
; ð40Þ

ðp0010;p
00
11Þ ¼

hpð0Þ
1� hpð0Þ

;
pð0Þ

pð1Þl

 !
p0000; ð41Þ

ðp00k0;p
00
k1Þ ¼ ðp0010;p

00
11ÞR

k�1; k P 1: ð42Þ

From Theorem 4.1, we can easily obtain the state probabilities of a server in steady-state
PðJ ¼ 0Þ ¼
X1
k¼0

p00k0 ¼
l� pð1Þ

l� pð1Þ þ pð0Þ ; ð43Þ

PðJ ¼ 1Þ ¼
X1
k¼1

p00k1 ¼
pð0Þ

l� pð1Þ þ pð0Þ : ð44Þ
Now we consider a customer who finds the server at state j upon arrival, thus his mean sojourn time is
SeðjÞ ¼ E½L�jj� þ 1
l

þ 1� j
h

;

where E½L�jj� is the expected number of customers in system found by an arrival, given that the server is found at state j. The
expected net benefit of such a customer who decides to enter is
BeðjÞ ¼ R� CðE½L�jj� þ 1Þ
l

� Cð1� jÞ
h

: ð45Þ
We thus need to compute E½L�jj� when all customers follow the same mixed strategy ðqð0Þ; qð1ÞÞ. Since the probability
p�LjJðkjjÞ, that an arrival finds k customers in system, given that the server is found at state j is
p�Lj0ðkj0Þ ¼
p00

k0
PðJ¼0Þ ; k ¼ 0;1;2; . . . ;

p�Lj1ðkj1Þ ¼
p00

k1
PðJ¼1Þ ; k ¼ 1;2; . . . :

8<: ð46Þ
Substituting (40)–(44) into (46) and from E½L�jj� ¼
P1

k¼jkp�LjJðkjjÞ, we get
E½L�j0� ¼ hpð0Þ
h

; ð47Þ

E½L�j1� ¼ hpð0Þ
h
þ lpð1Þ

l� pð1Þ : ð48Þ
Then the social benefit per time unit when all customers follow the mixed policy ðqð0Þ; qð1ÞÞ can be easily computed as
SBau ¼ p
l� pð1Þ

l� pð1Þ þ pð0Þ qð0Þ R� C
l

hþ hpð0Þ
h

� C
h

� �
þ p

pð0Þ
l� pð1Þ þ pð0Þ qð1Þ R� C

l
hþ hpð0Þ

h
þ lpð1Þ

l� pð1Þ

 !" #
:

Substituting (47) and (48) into (45) we can identify mixed equilibrium strategies for the almost unobservable model.

Theorem 4.2. In the almost unobservable Geo=Geo=1 queue with multiple vacations, there exists a unique mixed strategy
ðqeð0Þ; qeð1ÞÞ ‘observe Jn and enter with probability qeðJnÞ’ where the vector ðqeð0Þ; qeð1ÞÞ is given as follows:

Case I: 1
h <

1
l,
ðqeð0Þ; qeð1ÞÞ ¼

1
hp

lhR
C � l� h


 �
;0


 �
; R 2 C

lþ C
h ;

CðhþhpÞ
lh þ C

h


 �
;

ð1;0Þ; R 2 CðhþhpÞ
lh þ C

h ;
C
lþ

CðhþhpÞ
lh

h �
;

1; lðCpþ2Ch�Cph�lhRÞ
pðCpþCh�CphþClh�lhRÞ


 �
; R 2 C

lþ
CðhþhpÞ

lh ; Cp
l�pþ

CðhþhpÞ
lh

h �
;

ð1;1Þ; R 2 Cp
l�pþ

CðhþhpÞ
lh ;1

h �
:

8>>>>>>>>>><>>>>>>>>>>:
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Case II: 1
l 6

1
h 6

p
l�p,
ðqeð0Þ; qeð1ÞÞ ¼

1
hp

lhR
C � l� h


 �
; l�h

hp


 �
; R 2 C

lþ C
h ;

CðhþhpÞ
lh þ C

h


 �
;

1; lðCpþ2Ch�Cph�lhRÞ
pðCpþCh�CphþClh�lhRÞ


 �
; R 2 CðhþhpÞ

lh þ C
h ;

Cp
l�pþ

CðhþhpÞ
lh

h �
;

ð1;1Þ; R 2 Cp
l�pþ

CðhþhpÞ
lh ;1

h �
:

8>>>><>>>>:

Case III: p

l�p <
1
h,
ðqeð0Þ; qeð1ÞÞ ¼
1
hp

lhR
C � l� h


 �
;1


 �
; R 2 C

lþ C
h ;

CðhþhpÞ
lh þ C

h


 �
;

ð1;1Þ R 2 CðhþhpÞ
lh þ C

h ;1
h �

:

8><>:

Proof. Consider a tagged customer who finds the server at state 0 upon arrival. If he decides to enter, his expected net ben-
efit is
Beð0Þ ¼ R� CðE½L�j0� þ 1Þ
l

� C
h
¼ R� Cðhþ hpð0ÞÞ

lh
� C

h
:

Therefore we have two cases:
Case 1: Beð0Þ 6 0 i:e: C

lþ C
h < R 6 CðhþhpÞ

lh þ C
h.

In this case if all customers who find the system empty enter with probability qeð0Þ ¼ 1, then the tagged customer suffers
a negative expected benefit if he decides to enter. Hence qeð0Þ ¼ 1 does not lead to an equilibrium. Similarly, if all customers
use qeð0Þ ¼ 0, then the tagged customer receives a positive benefit from entering. Thus qeð0Þ ¼ 0 also cannot be part of an
equilibrium mixed strategy. Therefore, there exists a unique qeð0Þ satisfying
R� Cðhþ hpqeð0ÞÞ
lh

� C
h
¼ 0;
for which customers are indifferent between entering and balking. This is given by
qeð0Þ ¼
1
hp

lhR
C
� l� h

� �
: ð49Þ
Case 2: Beð0Þ > 0 i:e: R > CðhþhpÞ
lh þ C

h.
In this case, for every strategy of the other customers, the tagged customer has a positive expected net benefit if he

decides to enter. Therefore qeð0Þ ¼ 1.
We next consider qeð1Þ and tag a customer who finds the server at state 1 upon arrival. If he decides to enter, his expected

net benefit is
Beð1Þ ¼ R� CðE½L�j1� þ 1Þ
l

¼ R� Cpð1Þ
l� pð1Þ �

Cðhþ hpð0ÞÞ
lh

¼
C
h �

Cpð1Þ
l�pð1Þ ; in case 1;

R� Cpð1Þ
l�pð1Þ �

CðhþhpÞ
lh ; in case 2:

8<: ð50Þ
Therefore to find qeð1Þ in equilibrium, we must examine Case 1 and Case 2 separately and consider the following subcases in
each:

Case 1a: C
lþ C

h < R 6 CðhþhpÞ
lh þ C

h and C
h <

C
l.
ðqeð0Þ; qeð1ÞÞ ¼
1
hp

lhR
C
� l� h

� �
; 0

� �
:

Case 1b: C
lþ C

h < R 6 CðhþhpÞ
lh þ C

h and C
l 6

C
h 6

Cp
l�p.
ðqeð0Þ; qeð1ÞÞ ¼
1
hp

lhR
C
� l� h

� �
;
l� h

hp

� �
:

Case 1c: C
lþ C

h < R 6 CðhþhpÞ
lh þ C

h and Cp
l�p <

C
h.
ðqeð0Þ; qeð1ÞÞ ¼
1
hp

lhR
C
� l� h

� �
;1

� �
:

Case 2a: R > CðhþhpÞ
lh þ C

h and R < C
lþ

CðhþhpÞ
lh .
ðqeð0Þ; qeð1ÞÞ ¼ ð1;0Þ:
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Case 2b: R > CðhþhpÞ
lh þ C

h and C
lþ

CðhþhpÞ
lh 6 R 6 Cp

l�pþ
CðhþhpÞ

lh .
ðqeð0Þ; qeð1ÞÞ ¼ 1;
lðCpþ 2Ch� Cph� lhRÞ

pðCpþ Ch� Cphþ Clh� lhRÞ

� �
:

Case 2c: R > CðhþhpÞ
lh þ C

h and R > Cp
l�pþ

CðhþhpÞ
lh .
ðqeð0Þ; qeð1ÞÞ ¼ ð1;1Þ:
By rearranging Cases 1a–2c as R varies from C
lþ C

h to infinity, keeping the operating parameters p;l; h and the waiting cost
rate C fixed, we obtain Case I-III in the theorem statement. h

It seems reasonable at first glance that arriving customers are less willing to enter the system when they find the server
on vacation, since they have to wait for the left vacation time, i.e., we might expect that qeð0Þ 6 qeð1Þ. However, this is not
generally true. As Theorem 4.2 shows: in case I it is always true that qeð0ÞP qeð1Þ. In fact, consider a system with small mean
vacation time and concentrate on a tagged customer. If he is given the information that the server is on vacation, then he
knows that he must wait for the left vacation time. On the other hand, he expects that few customers are ahead of him, be-
cause the system is on vacation and the mean vacation time is small. Thus it is optimal for the tagged customer to enter.

4.2. Fully unobservable queue

We finally consider the fully unobservable case, where customers observe neither the state of the system nor the queue
length. Here a mixed strategy for a customer is specified by the probability q of entering. The stationary distribution of the
system state is from Theorem 4.1 by taking qð0Þ ¼ qð1Þ ¼ q and the state space Xfu is identical with Xau. The transition rate
diagram is depicted in Fig. 4, where p0 ¼ pq.

Theorem 4.3. Consider a fully unobservable Geo=Geo=1 queue with multiple vacations and b – a, in which customers enter with
probability q, i.e. they follow the mixed policy q. The stationary probabilities fp000kjjðk; jÞ 2 Xfug are
p00000 ¼
hðl� p0Þ
ðhþ hp0Þl

;

ðp00010;p
000
11Þ ¼

hp0

1� hp0
;

p0

p0l

� �
p00000;

ðp000k0;p
000
k1Þ ¼ ðp00010;p

000
11ÞeRk�1; k P 1;
where
a ¼ p0l
p0l

; b ¼ hp0

1� hp0
; eR ¼ b p0

p0l

0 a

" #
:

From (43), (44), (47) and (48) with qð0Þ ¼ qð1Þ ¼ q, we can easily get:
PðJ ¼ 0Þ ¼ l� p0

l
; PðJ ¼ 1Þ ¼ p0

l
; ð51Þ

E½L�j0� ¼ hp0

h
; E½L�j1� ¼ hp0

h
þ lp0

l� p0
: ð52Þ
...
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Fig. 4. Transition rate diagram for the q mixed strategy in the fully unobservable queue.
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Hence,
SBfu ¼ p0 R� C
l

lþ h� hp0

h
þ p0p0

l� p0

� �� �
:

Theorem 4.4. In the fully unobservable Geo=Geo=1 queue with multiple vacations, there exists a unique mixed equilibrium
strategy ‘enter with probability qe’, where qe is given by
qe ¼
lhR�Cl�Ch
pðRh�C�ChÞ R 2 C

h þ C
l ;

C
h þ

Cp
l�p


 �
;

1 R 2 C
h þ

Cp
l�p ;1

h �
:

8><>: ð53Þ
Proof. We consider a tagged customer at his arrival instant. If he decides to enter his mean sojourn time
Se ¼ E½L�� þ 1
l

þ PðJ ¼ 0Þ
h

:

From (51) and (52), we get
E½L�� ¼ hp0

h
þ p0p0

l� p0
:

Hence the expected net benefit
Be ¼ R� Cð1� pqÞ
l� pq

� C
h
: ð54Þ
When R 2 C
h þ C

l ;
C
h þ

Cp
l�p


 �
, we find (54) has a unique root in ð0;1Þ which gives the first branch of (53). When

R 2 C
h þ

Cp
l�p ;1

h �
;Be is positive for every q, thus the best response is 1 and the unique equilibrium point is qe ¼ 1, which gives

the second branch of (53). h
5. Numerical examples

In this section, according to the analysis above, we firstly present a set of numerical experiments to show the effect of the
information level as well as several parameters on the behavior of the system. And then we give an example to show the use
of results.

5.1. Numerical experiments

Here we concern about the values of the equilibrium thresholds for the observable systems and the values of the equi-
librium entrance probabilities for the unobservable systems as well as the social benefit per unit time when customers fol-
low the corresponding equilibrium strategies.

We first consider the observable models and explore the sensitivity of the equilibrium thresholds with respect to the ar-
rival rate p, vacation rate h and service reward R. From the three sub-figures ða1; b1; c1Þ on the left of Fig. 5, we can make an
interesting conjecture that the equilibrium thresholds fkL; . . . ; kUg for the almost observable case always locate in
ðLeð0Þ; Leð1ÞÞ for the fully observable case. In other words, the thresholds in the almost observable model have intermediate
values between the two separate thresholds when arriving customers observe the state of the server.

Concerning the sensitivity of the equilibrium thresholds, we can make the following observations. When the arrival
rate p varies, the fully observable thresholds remain fixed since the arrival rate is irrelevant to the customer’s decision
when he has full state information. On the other hand, the almost observable thresholds increase with the arrival rate,
which means that if an arriving customer is told the information of the present queue length, then he is more likely to
enter when the arrival rate is higher. This phenomenon in the almost observable case that customers in equilibrium tend
to imitate the behavior of other customers is of the ‘Follow-The-Crowd’ (FTC) type. The reason for this phenomenon is
that when the arrival rate is high, it is probably that the server is active, therefore the expected delay from server vaca-
tion is reduced. However, all thresholds increase when the vacation rate h varies, except that Leð1Þ remains constant. This
is certainly intuitive, because when the server vacation is shorter, customers generally have a greater incentive to enter
both in the fully and almost observable systems. Finally, along with the increasing of the service reward R, no matter in
the fully observable model or in the almost observable model, the thresholds increase in a linear fashion, which is ex-
pected from Theorems 3.1 and 3.4.
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Fig. 5. Equilibrium thresholds for the observable systems. Sensitivity with respect to: a1. p, for l ¼ 0:95; h ¼ 0:05; C ¼ 1; R ¼ 30; b1. h, for
p ¼ 0:4; l ¼ 0:9; C ¼ 1; R ¼ 30; c1. R, for p ¼ 0:4; l ¼ 0:9; h ¼ 0:05; C ¼ 1. Equilibrium entrance probabilities for the unobservable systems. Sensitivity
with respect to: a2. p, for l ¼ 0:95; h ¼ 0:3;C ¼ 1;R ¼ 4:5; b2. h, for p ¼ 0:9;l ¼ 0:95;C ¼ 1;R ¼ 8; c2. R, for p ¼ 0:4;l ¼ 0:5; h ¼ 0:05;C ¼ 1.

3874 Y. Ma et al. / Applied Mathematical Modelling 37 (2013) 3861–3878



0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60
Equilibrium Social Benefit

p

F.O.
A.O.kL
A.O.kU
A.U.
F.U.

Fig. 6. Social benefit for different information levels. Sensitivity with respect to p, for l ¼ 0:99; h ¼ 0:05;R ¼ 80;C ¼ 1.

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

30
Equilibrium Social Benefit

θ

F.O.
A.O.kL
A.O.kU
A.U.
F.U.

Fig. 7. Social benefit for different information levels. Sensitivity with respect to h, for l ¼ 0:99;p ¼ 0:2;R ¼ 110;C ¼ 1.
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Next we turn to the unobservable systems and explore the sensitivity of the equilibrium entrance probabilities. The re-
sults are presented in the three sub-figures ða2; b2; c2Þ on the right of Fig. 5. A general observation is that the entrance prob-
ability in the fully unobservable queueing system is always inside the interval formed by the two entrance probabilities in
the almost unobservable queueing system, which is similar to the results in the observable models. Therefore when custom-
ers are not told the server state, they join the queue with a probability between those in the two separate cases provided that
the state of the server can be observed by arriving customers. With regard to the sensitivity of entrance probabilities, we
observe that they are decreasing with respect to p. Therefore when the arrival rate increases, customers are less willing
to enter the system. This is in contrast to the observable models, where thresholds are increasing with p. The reason for
the difference is that here the information about the present queue length is not available, when the arrival rate is higher,
arriving customers expect that the system is more loaded and are less inclined to enter. Furthermore the entrance probabil-
ities are all increasing with respect to h and R, which is intuitive.

Figs. 6–8 are concerned with the social benefit under the equilibrium balking strategy for the different information levels.
For the almost observable case, we only present the social benefit under the two extreme thresholds kL and kU . In figures we
notice that the social benefit in the almost observable model is generally more than those in other cases while the value for
the fully observable model is always in an intermediate position. In addition, the difference in social benefit is small between
the fully unobservable and almost unobservable systems. These phenomena indicate that the customers as a whole are gen-
erally better off when they are informed of the number of present customers while the information about the server state is
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not so beneficial. Moreover, the full information about the queueing system may actually hurt the social benefit. In other
words, the additional information on the server state is not very helpful for increasing equilibrium social benefit. As to
the sensitivity of the equilibrium social benefit, we find that it is increasing with the arrival rate, vacation rate and service
reward, which is intuitive. Now we pay more attention to Fig. 7 in which from a certain value of h, the trend of the equilib-
rium social benefit becomes smooth and steady. This is because that with the vacation rate increasing, on the one hand the
vacation time reduces which benefits the social benefit, on the other hand since more people left for service, the service time
increases which has a detrimental effect on the social benefit. When the vacation rate increases to a certain point, the po-
sitive part counterbalances the negative part, therefore the equilibrium social benefit tends to reach a steady value.

5.2. An example

In daily life, it is common to see the queueing phenomenon, especially in the banks where lots of people are waiting for
service. Now banks generally use the automatical calling system, from which the arriving customer takes a queue number.
The data series recorded by bank queueing machines are used to analyze the queueing rules of service counters. We get data
series from a regional bank and show it in Table 1, where k represents the data number and Tk represents the data arrival
time. From Table 1, we obtain that the mean arrival rate is 0.6, i.e. p ¼ 0:6. If the automatical calling system is in work order,
customers could observe the queue length, who are thus in an observable queue, there exist equilibrium pure threshold
strategies. However, if not, there exist equilibrium mixed strategies. The equilibrium strategies both in observable and unob-
servable queues are shown in Table 2, which are obtained from Theorems 3.1, 3.4, 4.4 and the case III of Theorem 4.2. In an
observable model, customers have a unique equilibrium strategy when the server state is provided. More concretely, an
arriving customer could follow the equilibrium strategy that ‘enter if Ln 6 8 and balk otherwise’ when the server is on vaca-
tion, or follow the equilibrium strategy that ‘enter if Ln 6 27 and balk otherwise’ when the server is busy. However, if the
information of server state is not provided, all pure threshold strategies ‘enter if Ln 6 Le for some fixed Le 2 f9;10; � � � ;20g
and balk otherwise’ are equilibrium. We could find that Le locates between Leð0Þ and Leð1Þ. On the other thing, in the unob-
servable case, if a customer is only informed of the state of the server upon arrival, there exists a mixed strategy specified by
ðqeð0Þ; qeð1ÞÞ. When the server is on vacation, the equilibrium strategy is ‘enter with probability 0.7456’. However, when the
server is busy, the equilibrium strategy is ‘always enter’. If customers could observe neither the server state nor the queue
length, there exists a unique mixed strategy ‘enter with probability 1’. It is less convenient to use the equilibrium strategies
as the entrance probabilities in unobservable case than as the thresholds in observable case.

Figs. 9 and 10 are concerned with the sensitivity of equilibrium strategies and social benefits with respect to l. We can
make the following observations. No matter in the observable case nor in the unobservable case, customers are more likely
Table 1
Data arrival time in an hour.

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Tk 0 2 3 5 6 8 11 12 14 15 16 17 19 22 23 25 26 29

k 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
Tk 30 32 33 35 36 38 41 42 44 45 46 47 49 52 53 55 56 60



Table 2
Equilibrium strategies. ðp ¼ 0:6;l ¼ 0:95; h ¼ 0:05;C ¼ 1;R ¼ 30Þ.

Observable case Unobservable case

Leð0Þ Leð1Þ LefkL; kL þ 1; . . . ; kUg qeð0Þ qeð1Þ qe

8 27 9, 10,. . ., 20 0.7456 1 1
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to enter when the service rate is higher, which is intuitive. The difference in social benefit is small between the fully and
almost observable case, while there may be significant differences between the observable and the unobservable models.
Thus, it may be argued that customers as a whole are more better off when they are informed of the queue length than
the information about the server state. Moreover, we notice that the social benefits in the almost observable model are gen-
erally more than those in the fully observable case. This might mean the full information about the queueing system may
actually hurt the social benefit. In other words, in an observable model the additional information on the server state is
not very helpful for increasing equilibrium social benefit. However, in an unobservable queue, the social benefit when cus-
tomers could observe the server state is obviously more than the case provided with no information. Those observations
indicate that when the service rate l varies, the information of the queue length is the most beneficial factor to increase
the social benefit, while the server state is helpful only in the unobservable case.
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6. Conclusion

In this paper, we have explored the equilibrium behavior in the discrete-time Geo=Geo=1 queue under multiple vacation
policy. On the one hand, the discrete-time queue where the inter-arrival time and service time are positive integer random
variables is more suitable to model and analyze the digital communication system. On the other hand, customers have the
right to make decisions according to the accurate situation, which is more sensible than the classical viewpoint in queueing
theory that decisions are made by the servers and customers are forced to follow them. To the best of the authors’ knowl-
edge, there is no work concerning the equilibrium balking strategies in discrete-time queues with multiple vacations. Be-
sides, this is the first time that the multiple vacation policy is introduced into the economics of queues.

We have classified four cases with respect to the level of information provided to arriving customers and obtained the
equilibrium strategies for each case. The stationary system behavior has been analyzed and a variety of stationary perfor-
mance measures have been developed under the corresponding strategies. Furthermore, we have discussed the sensitivity
of equilibrium behavior with respect to various parameters as well as the effect of the information level on the equilibrium
social benefit. The research results could instruct the customers to take optimal strategies to reduce the loss of queueing. In
addition, the study could provide the managers with a good reference to discuss the pricing issues in queuing systems, such
as the entrance fee, the priority fee and so on. Further extensions to the work would be to consider the equilibrium customer
behavior in models under single vacation policy.
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